skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ugur, Baris_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nuclear quantum effects (NQEs) influence many physical and chemical phenomena, particularly those involving light atoms or occurring at low temperatures. However, their impact has been carefully quantified in few systems-like water-and is rarely considered more broadly. Here we use path-integral molecular dynamics to systematically investigate NQEs on thermophysical properties of 92 organic liquids at ambient conditions. Depending on chemical constitution, we find substantial impact across thermal expansivity, compressibility, dielectric constant, enthalpy of vaporization, and notably molar volume, which shows consistent, positive quantum-classical differences up to 5%; similar, less pronounced trends manifest as isotope effects from deuteration. Using data-driven analysis, we identify three features-molar mass, classical hydrogen density, and classical thermal expansivity-that accurately predict NQEs and facilitate understanding of how characteristics like branching and heteroatom content influence behavior. This work highlights the broad relevance of NQEs in molecular liquids, while also providing a conceptual and practical framework to anticipate their impact. 
    more » « less